Reprogramming Roadblocks Are System Dependent
نویسندگان
چکیده
Since the first generation of induced pluripotent stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here, we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights mesenchymal-to-epithelial transition (MET) as a roadblock but also faces more severe difficulties to attain a pluripotent state even post-MET. In contrast, more efficient cassettes can reprogram both wild-type and Nanog(-/-) fibroblasts with comparable efficiencies, routes, and kinetics, unlike the less efficient reprogramming systems. Moreover, we attribute a previously reported variation in the N terminus of KLF4 as a dominant factor underlying these critical differences. Our data establish that some reprogramming roadblocks are system dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming.
منابع مشابه
A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2
The generation of induced pluripotent stem cells (iPSCs) from differentiated cells following forced expression of OCT4, KLF4, SOX2, and C-MYC (OKSM) is slow and inefficient, suggesting that transcription factors have to overcome somatic barriers that resist cell fate change. Here, we performed an unbiased serial shRNA enrichment screen to identify potent repressors of somatic cell reprogramming...
متن کاملGenome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming.
Although transcriptome analysis can uncover the molecular changes that occur during induced reprogramming, the functional requirements for a given factor during stepwise cell-fate transitions are left unclear. Here, we used a genome-wide RNAi screen and performed integrated transcriptome analysis to identify key genes and cellular events required at the transition steps in reprogramming. Genes ...
متن کاملA Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells
Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cell...
متن کاملTwo Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes
The conversion of somatic cells to hepatocytes has fundamentally re-shaped traditional concepts regarding the limited resources for hepatocyte therapy. With the various induced pluripotent stem cell (iPSC) generation routes, most somatic cells can be effectively directed to functional stem cells, and this strategy will supply enough pluripotent material to generate promising functional hepatocy...
متن کاملEngineering Cell Fate: The Roles of iPSC Transcription Factors, Chemicals, Barriers and Enhancing Factors in Reprogramming and Transdifferentiation
Direct reprogramming technology has emerged as an outstanding technique for the generation of induced pluripotent stem (iPS) cells and various specialized cells directly from somatic cells of different species. Recent studies dissecting the molecular mechanisms of reprogramming have methodologically improved the quality, ease and efficiency of reprogramming and eliminated the need for genome mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015